Biosimilars

An effective treatment at a lower cost

While most medications are both safe and effective, unfortunately many are also expensive. Biosimilars – new versions of a drug that are similar to the original in every meaningful way – offer a potentially less expensive alternative to costly original biological drugs. Professor Tore K. Kvien of the University of Oslo, Norway, and his colleagues have demonstrated that one biosimilar, CT-P13, is clinically equal to the drug infliximab when switching from the original to the biosimilar equivalent. This means that patients can be switched to the biosimilar drug for non-medical reasons, without compromising safety, efficacy or immunogenicity.

A drug used in medicine must be proven to be both effective and safe. Ideally, medicine should also be affordable and accessible to all. Unfortunately, many medicines, especially biologic drugs, are very expensive. The drugs are protected by patents, which allows manufacturers to set a price that puts the drug out of reach of many patients. The good news is that patients eventually expire. When this happens, other companies can produce the same drug and sell it at a more affordable price.

BIOSIMILARS

Biosimilars are drugs that are highly similar to an approved, originator biological medicine. The biosimilar should not be different, in any clinically meaningful way, from the original medicine, in either quality, safety or efficacy. Biosimilars are assessed at the molecular level to check for comparability with the original drug.

Regulatory approval of biosimilars differs from that of the originator drug. Approval is based on evidence that the biosimilar is as safe and effective as the original, which is tested. Comparability is shown through an extensive preclinical programme. Clinical comparability must only be proven in one of the diseases for which the original is an approved treatment. In the case of infliximab, in fact, CT-P13 was found to be comparable to the originator in two conditions: ankylosing spondylitis and rheumatoid arthritis. Subsequently, in 2013, CT-P13 was approved for use in the same six conditions as the original drug. Like generic drugs, the more complex biosimilars are often created in anticipation of the patent expiry of the original medication. Crucially, biosimilars can be made available at a lower cost, making treatments more accessible around the world.

THE NOR-SWITCH TRIAL

Professor Tore K. Kvien of the University of Oslo and Diakonhjemmet Hospital has dedicated his career to the field of rheumatology. Recently, Professor Kvien led the NOR-SWITCH trial to compare infliximab with its biosimilar, CT-P13. In particular, the team hoped to discover that switching to the biosimilar was not inferior to continued treatment with infliximab.

To justify switching, the biosimilar must be as effective as the originator drug after switching from originator to the corresponding biosimilar.

The NOR-SWITCH trial, which was fully funded by the government of Norway, was the first randomised study to determine whether patients can be switched from infliximab to CT-P13 with no adverse effects. A total of 482 patients were recruited to the year-long trial with first patient enrolment in October 2014. Patients on stable treatment on infliximab (in average 6 years) were randomised into two groups: one group continued to receive infliximab, while the other was switched to treatment with CT-P13. All patients were adults with either Crohn’s disease, ulcerative colitis, spondyloarthritis, rheumatoid arthritis, psoriatic arthritis or chronic plaque psoriasis.

By necessity, the trial could not compare the effects of infliximab vs. CT-P13 in each individual disease. This information would be useful if, as suspected, the action of infliximab in each individual disease was the same in both groups. Results for other secondary endpoints were also similar with no difference across other efficacy measures. There were also a similar number of adverse events (such as a reaction to infusion of the drug) in both patient groups as well drugs levels and anti-drug antibody formation (i.e. immunogenicity).

To compare the two drugs, the researchers assessed how many patients in each group experienced disease worsening over the course of the 12 months of the study. The results revealed that the condition of 26% of the patients in the infliximab group and 30% of the patients in the CT-P13 group deteriorated over the course of the year. To decide that switching to CT-P13 was non-inferior to continued treatment with infliximab, the 95% confidence interval of the difference in disease worsening was within the predefined non-inferiority margin of 15% – which was fulfilled.

After a full analysis of the results, the team felt confident in stating that switching to CT-P13 was not inferior to continued treatment with infliximab. The proportion of patients who experienced remission (i.e. a reduction in or disappearance of their symptoms) was the same in both groups. Results for other secondary endpoints were also similar with no difference across other efficacy measures.

To justify switching a patient from the originator product to a biosimilar, the biosimilar must be as effective as the originator drug.
Behind the Research
Professor Tore K. Kvien

A less expensive alternative allows individuals, healthcare institutions and countries to access a treatment that would otherwise not be an option.

As more biosimilars become available, patients may be switched from the originator to one biosimilar after another, and back again, for reasons such as cost or availability.

Research Objectives
Professor Kvien’s major research activities include epidemiological and health service research, with a focus on frequently occurring diseases such as rheumatoid arthritis, osteoarthritis and ankylosing spondylitis.

Detail
Tore K. Kvien
Dept of Rheumatology
Diakonhjemmet Hospital
Box 23 Vinderen
N-0319 Oslo
Norway

Bio
Tore K. Kvien was Professor of Rheumatology at the University of Oslo, Norway, since 1997 (eminent since beginning of 2020) and was Head of the Department of Rheumatology at Diakonhjemmet Hospital, Oslo from 1994 to 2019. He is PI of the NOR-SWITCH study and has published more than 550 original research publications in international peer-reviewed journals. Prof Kvien was President of the European League Against Rheumatism (EULAR) from 2005 to 2007 and Editor-in-Chief of the world-leading journal, Annals of the Rheumatic Diseases, from 2018 to 2017. Prof Kvien has been appointed as Master of the American College of Rheumatology in 2015, is honorary member of several societies, received the EULAR meritorious service award in 2017, the Carol Nachman medal in 2018 for his contributions to international rheumatology, and the Norwegian King recently appointed professor Kvien as Officer First Class of the Royal Order of St Olav.

Funding
The Norwegian Government which supported the study without any involvement from commercial parties.

Collaborators
My colleagues Guro Lavik Goll and all other collaborators in the project group.

References


Personal Response
How widespread do you think the use of biosimilars will become, worldwide?

In Norway, the originator infliximab is nearly no longer used. The same is seen in Denmark and some other countries also for etanercept and adalimumab. The exception is when producers of the originator products successfully compete with the biosimilars on cost in national tenders. The winner of the adalimumab tender 2019 in Norway was the originator adalimumab, and this year Pfizer offered a lower price for originator etanercept than the price for biosimilar etanercept. Data from Norway support that total uptake of biologic drugs has increased by more about 50% during the last years, due to the price competition. Other countries also have increasingly effective tender systems which reduce the cost and lead to improved accessibility for patients – which ultimately will benefit their health and the healthcare system overall.