
Since their inception in the 1980s, 
when a quantum computer 
was first proposed by physicist 

and Nobel laureate Roger Feynman, 
quantum computers have used complex 
quantum mechanics to perform 
calculations that classic computers are 
unable to solve. Google announced 
their quantum supremacy in 2019, 
when the company developed the 
first quantum machine capable of 
outperforming a traditional computer, 
performing a calculation that would take 
a classic supercomputer 10,000 years 
(while IBM claims they can solve this 
task in 2.5 days). While Google’s circuit-
based quantum gate computer can map 
suitable complex quantum algorithms, 
commercial quantum computers are 
intended for solving optimisation 
problems and performing quantum 
computations via adiabatic evolution. 

The quantum adiabatic theorem 
suggests that if a quantum mechanical 
system is subjected to external 

conditions that are gradually 
changing, it can adapt its 

configurations, which 

means that the probability distribution 
of this configuration is changed during 
the process. On the other hand, if the 
external conditions are rapidly changing, 
the configuration has insufficient time 
to adapt, so the initial probability 
distribution of the configuration will 
remain almost unchanged, leading to a 
completely erratic result.

The Quantum Annealer from D-Wave is 
the only commercially available quantum 
computer to date. First launched in 
2011, the D-Wave machine is a version 
of adiabatic quantum computing 
designed to solve optimisation 
problems. By way of a Python-based 
software development kit and a web 
interface, students can interact with a 
D-Wave quantum computer without 
the need for a thorough knowledge of 
quantum mechanics.

Dr Stefan Isermann from T-Systems 
International GmbH examines the 
adiabatic theorem in detail and derives 
the conditions for an optimal schedule 
that reduces the computational time. 
He determines the computation time 
required for an adiabatic quantum 
search algorithm with an optimal 
schedule and provides the supporting 
numerical verification.

ADIABATIC QUANTUM 
COMPUTATION 
Quantum annealing is a quantum 
computing technique that is employed to 
find the optimal solution to problems that 

Discovering the 
optimal schedule for 
adiabatic quantum 
computation

Quantum computers 
outperform classic machines 
when it comes to solving 
complex calculations. 
Commercial quantum 
computers are now available, 
and these perform quantum 
computation via a process 
called ‘adiabatic evolution’. The 
quantum adiabatic theorem 
states that if a quantum 
mechanical system is subjected 
to external conditions that 
are gradually changing, it 
can adapt its configuration. 
Dr Stefan Isermann from 
T-Systems International 
GmbH, Germany, examines 
the adiabatic theorem and 
ascertains the conditions for an 
optimal schedule, reducing the 
computation time. 

have a large range of possible solutions. 
Quantum annealing takes advantage of 
properties that are specific to quantum 
physics, such as quantum tunnelling 
(where particles penetrate a potential 
energy barrier), entanglement (when 
two particles become entangled and 
remain connected even when they are far 
apart), and superposition (two or more 
quantum states can be added together, 
ie, superposed, to make another valid 
quantum state). A quantum annealer 
solves optimisation problems using 
adiabatic quantum computing.  In theory, 
it can check 2n possible configurations 
of n qubits (a basic unit of quantum 
information), even when n is a very 
large number – a feat that cannot be 
performed by a classical computer. 
Adiabatic quantum computation 
involves translating the problem into a 
Hamiltonian operator. 

HAMILTONIAN OPERATORS
In quantum mechanics, a system’s 
‘Hamiltonian’ corresponds to the 
total energy of the system. The 
system’s energy spectrum is the set 
of possible outcomes, in the form of 
energy eigenvalues, which can be 
obtained from a measurement of the 
system’s total energy. 

To find a problem’s optimal solution, 
the system is initially brought into 
an easy-to-prepare ground state, 
which is a superposition of all 2n 
possible configurations and in which 
all configurations are uniformly 
distributed. The ground state of the 
final Hamiltonian describes the specific 
problem’s solution. The Hamiltonian’s 
ground state is the state of lowest 

energy, known as the system’s zero-
point energy. This initial ‘simple’ 
Hamiltonian is adiabatically (that is, 
slowly and steadily) evolved into the 
required final complex Hamiltonian. 
Employing the adiabatic theorem means 
that the system remains in the ground 
state throughout the evolution process. 
When the evolution is complete, the 
end state of the system describes the 
solution to the problem.

Adiabatic evolution begins with the 
system in the ground state of the 
initial Hamiltonian and finishes with 
the system in the ground state of the 
final Hamiltonian. It is hoped that 
after traversing through an adiabatic 
evolution path, or schedule, starting 
with the initial Hamiltonian, the 
system terminates in the ground state 
of the problem Hamiltonian. This 
unknown ground state has the smallest 
energy eigenvalue and corresponds 
to the configuration of the problem’s 
optimal solution. It is reached by 

moving adiabatically from the initial 
Hamiltonian with its known ground 
state. If the transition happens slowly 
enough, the system will remain in the 
ground state, resulting in the problem 
Hamiltonian’s optimal configuration, 
ie, moving from an initially uniform 
probability of all configurations 
to a probability distribution that 
is peaked around the unknown 
configuration of the solution.

Isermann describes how the system’s 
time evolution is controlled by the 
Schrödinger equation, a linear partial 
differential equation that is the quantum 
equivalent of Newton’s second law in 
classical mechanics, which regulates 
the time evolution of the quantum-
mechanical system’s wave function. 
The wave function is a mathematical 
description of the quantum state of 
an isolated quantum system in the 
form of a time-dependent complex 
probability amplitude function. The 
transition amplitude is a complex 
number derived from the interacting 
part of the Hamiltonian that can induce 
transitions from one energetic state 
to another. He demonstrates that the 
sum of all local transition amplitudes 
is constant, regardless of the selected 
schedule. The square of the local 
transition amplitude times a small 
time interval  gives the probability for 
a transition from the ground state to 
the first exited state. Should a smaller 
transition amplitude be present at 
a particular time, it must then be 
balanced with the presence of a larger 
amplitude at another time, which leads 
to a higher probability of transition. This 
led to the condition that the amplitudes 
should be constant throughout the time 

The system’s time evolution is controlled 
by the Schrödinger equation, the quantum 

equivalent of Newton’s second law.
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By examining the adiabatic theorem, Isermann has determined the optimal schedule for a 
quantum search, shown here among other schedules for N=256. A schedule determines how to 
switch from an initial (s=0) to a final (s=1) Hamiltonian during a scaled time  =t/T. 
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Personal Response

What triggered your interest in adiabatic quantum 
computing and inspired this research?

  Quantum computing will become increasingly 
important in information technology over the next 
few years. And since the Quantum Annealer is the first 
commercially available quantum computer, it is important 
to understand its possibilities as well as its limitations. 
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schedules in a quantum search, 
revealing that they summed to π/2. He 
also calculated the transition probability 
of the searched state for the various 
schedules. Isermann verified his results 
by solving the Schrödinger equation 
numerically with the same initial 
condition. The evolution corresponding 
to the optimal schedule confirms that 
only an oscillation with small amplitude 
and a frequency with an order of 
asinh( )/   reached 99% after a time 
T = 6   and confirms analytical results 
where the transition probability, 2, is 
calculated exactly and the computation 
time is T = 2  asech , where N is the 
number of items to be searched. The 
minimal energy gap is 1,0 = 1/ . 

QUANTUM LEAP FORWARD
Isermann found that the schedule 
is governed by both the magnitude 
and location of the minimum energy 
gap, or the difference between the 
ground state and the first excited 
state. Discovering an optimal 
schedule ensures that while optimal 
schedule conditions are satisfied, the 
computation time is proportional to 
the inverse of the minimum energy 
gap. This represents a quadratic 
speedup of computation time, since 
the adiabatic theorem estimates a 
computing time that is proportional 
to the inverse square of the minimum 
energy gap. This speedup applies not 
only to a system of qubits but to every 

quantum mechanical system, which 
Isermann shows using the example 
of an anharmonic oscillator. Isermann 
remarks that ‘this is an important 
result because the advantage of the 
quantum annealing process over the 
classical annealing algorithm is quantum 
mechanical tunnelling through high 
energy barriers, but this is only given 
as long as the system is in a quantum 
state.’ Overall, while an optimal 
schedule cannot be specified exactly 
in most cases, given the structural 
knowledge of the Hamiltonian problem, 
it can be approximated.

applying the quantum mechanical 
adiabatic theorem locally in terms of 
time. Local means that the change 
rate is not constant, so at any given 
time the adiabatic evolution path, or 
schedule, depends on the energy gap 
at that particular instance. However, 
Isermann questions the validity of this 
proposal, as the quantum mechanical 
adiabatic theorem conveys only a 

global statement (meaning the entire 
computation time, where local refers to 
portions or instances of this time), in the 
form of an estimate of the probability 
of the transition from the ground 
state to the first excited state over the 
entire computation time. Moreover, 
his example calculations demonstrate 
that the precise application of this 
approach does not achieve an 
optimal schedule. 

CALCULATIONS CONFIRMED
Isermann calculated the associated 
transition amplitudes for all the 

evolution. Isermann also determined 
that while the conditions for an optimal 
schedule are satisfied, the computation 
time is proportional to the inverse of 
the minimum energy gap, where the 
minimum energy gap is the difference 
between the ground state and the 
first excited state (when the system’s 
energy state is increased) during the 
Hamiltonian’s time evolution.

ADIABATIC QUANTUM SEARCH
Isermann confirms the results with 
numerical simulations of a search 
algorithm together with those from 
a toy problem (a small problem 
used for education or development 
purposes). He applied the optimal 
schedule conditions to a search for 
one of a number, denoted as N, items 
in an unsorted database. The classical 
algorithm has complexity of order N, 
so linear time complexity which means 
the speed the algorithm runs for is 
proportional to the number of inputs, N. 
More inputs equal greater time. Grover’s 
algorithm, a quantum search algorithm 
for unstructured searches where the 
system evolution is based on quantum 
gates, has complexity of order .

Other researchers have suggested that 
an optimal schedule could be obtained 
for an adiabatic quantum search by 

The advantage of the quantum annealing 
process over the classical annealing 

algorithm is quantum mechanical 
tunnelling through high-energy barriers. 

Graph showing the exact solution alongside the approximate solutions of a quantum search with 
optimal schedule and scaled computation time T~  =T⁄ 4.
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