Physical Sciences | Szymon Łukaszyk

Revealing properties of regular convex polytopes in negative dimensions

Mathematics and physics extend the notion of dimensionality beyond the usual perception of three dimensions to consider higher-dimensional spaces (eg, four-dimensional space-time) as well as negative, fractionally, and complex dimensional spaces. The formulae describing properties such as area and volume of some geometric objects can result in indefiniteness, particularly when dealing with negative dimensions. Dr Szymon Łukaszyk, an independent researcher in Poland, has discovered recurrence relations formulae. His investigation into the properties of regular convex polytopes (fundamental geometric objects with flat sides) and balls reveals the previously unknown properties of these objects in negative dimensions.

T
he term 'dimension' generally fers to an object's size in terms flength. In mathematics, this concept is expanded to define a point Whin Euclidean space, with a point being zero-dimensional, a line being one-dimensional, a plane being twodimensional, and space being threedimensional. Both mathematics and physics extend the notion of dimension to spas For istan fourdimen space-time - where three numbers, or coordinates, locate a point in space and the fourth dimension fixes its time - plays a significant role in relativity and quantum theory. In topology, the notion of space is broadened further to include negativedimensional spaces with applications in linguistic statistics and fog computing
(a decentralised computing architecture located between the cloud and the devices producing data).

The formulae describing properties such as area and volume of some geometric objects rely on the gamma function. The gamma function is an extension of the factorial function $n!$, the product of all non-negative integers less than or equal to n, tha includes complex and numbers), not just integers. When numbers, indefiniteness (where there is no specif start or end value) and singularities (points where functions are not defined or do not behave as expected) can occur with these formulae. Independent researcher Dr Szymon Łukaszyk has discovered recurrence relations that can be employed to remove the indefiniteness emerging from these known formulae.

REGULAR CONVEX

POLYTOPES AND n-BALL A polytope is a fundamental geometric object with flat sides, faces, or facets. It is an extension of the concept of
two-dimensional (2D) polygons and three-dimensional (3D) polyhs and
can exist in any number of dimensions, The generalisation of an n-dimensional polytope is known as an n-polytope, o a polygon is a 2-polytope, polyhedron is a 3 -polytope.
ukaszyk is particularly interested in regular convex polytopes. These are egular in that the polytope's surfaces are dimension All vertex angles are therefor equal and all sides are the same length and convex, in that a line joining any two points of the polytope lies entirely inside this object. There is an infinite number of regular 2D convex polygons, five regular 3D convex polyhedra (known as the Platonic solidss), and six regular 4D convex 4-polytopes. In higher-dimensional spaces where n is five or more, there are only three: the n-simplex, the n-cube, and the n-orthoplex. Regular n-simplices include 2D equilateral triangle and 3D regular tetrahedron, n-cubes include 2 DD square squares in 2D and octahedrons in 3 D . addition, n-balls are examined These disks in 2D and balls in 3D, and therefore regular and convex too.

DIMENSIONS AND

GEOMETRIC CONCEPTS

imensions define the minimum number, n, of coordinates, or independent parameters, that are required to identify particular point within n-dimensional space. When $n=-1$, this is known as the empty set and refers to a void with zero volume and an undefined surface area, in that no value exists for it. Negative dimensions and geometric concepts are positive dimensions Dimensions, hotion of postive dimensions. Dimensions, howe

The recurrence relations presented in this study remove the indefiniteness and singularities existing in known formulae.
dimensions and geometric concepts involve real and negative numbers. Fractal dimensions are a ratio that
provide statistical indexes of complex They compare how the details in fractal patterns alter with the scale at which they are measured. Łukaszyk also considers complex dimensions and geometric concepts employing complex numbers.

KNOWN FORMULAE NOT

 DEFINED IN ALL DIMENSIONS The known formula for the volume of n-balls involves Euler's gamma function, which is undefined for zero and negative integers. Therefore, n-ball volume is It follows that since the formula for It follows that since the formula for volume, it too is undefined for negative even dimensions. Furthermore, the know formulae for both regular n-simplices and n-orthoplices contain factorials. Factorials are only defined for non-negative integers, so these formulae are undefined in negative dimensions. Another known recurrence relation entails expressing the volume of an n-ball referring to the volume of an ($n-2$)-ball with the same radius, but this formula is undefined when n is zero.
NEW RECURRENCE RELATIONS

 n-BALLSŁukaszyk has discovered a recurrence relation where a series of rational as fractions) can be established whers
the number corresponding to $n, f_{n^{\prime}}$ is calculated by dividing 2 by n and multiplying by the value corresponding to $\mathrm{n}-2$. The discovery of this recurn
relation means that the volume of an n-ball can be expressed as a product o this rational factor, an irrational factor (a number that cannot be represented as a fraction) of π raised to the power of $\lfloor n / 2\rfloor$ (Ix d denotes the floor function - its output is the greatest integer less than or equal to x), and a radius factor of the n-ball radius raised to the power of n (Figure 1). Using this formula, the researcher calculates the volumes and surface areas of n-ball forvarious dimensions. Volumes and surface areas were already established for positive undefined, this research reveals that volumes and surfaces can also be generated for negative add dimensions. Furthermore, it demonstrates that n-balls have zero volumes (voids) and zero surfaces

points) when the dimensions are egative and even
n-SIMPLICES
Kukaszyk demonstrates how the ecurrence relation of the volume and surface of n-simplices can be presented in terms of the length of the shapes edges. Applying these formulae reveal edges. Applying these formulae reve where n is less than -1 , n-simplices have vanishing volumes and surfaces. Moreover, when the dimensions are negative fractions, the previously undefined volumes and surfaces take on maginary values that diverge (do not have a distinct limit) as n decreases.
-ORTHOPLICES Similarly, the recurrence relation of the volume and surface of n-orthoplices can be described in terms of edge ongth. Again, the researcher was able and reveal that when the dimensions re negative integers, n-orthoplices have zero volume With negative, fractional dimensions, however, both he volume and the surface diverge with decreasing n. When the number of dimensions is less than 0 , the surfaces vanish (Figure 2).

OMNIDIMENSIONAL

OLYTOPES INSCRIBED IN AND CIRCUMSCRIBED ABOUT n-BALLS tukaszyk also explores volumes and surfaces of omnidimensional polytopes hat are inscribed in and circumscribed about n-balls, ie, just touching the surface, and can be wreten in terms timensions, these took negrex wave Examining the values associated with negative integer dimensions with negative integer dimensions rational, irrational, and integer coefficients (Figures 3, 4, and 5).

Figure 3. Graphs of volumes (V) of n-cubes (pink) inscribed in unit diameter n-balls with the
reflection function (red) and volumes of unit diameter n-balls (blue) for $n=[-6.6]$.

Figure 4. Graphs of volumes (V) and surfaces (S) of regular n-simplices (red) circumscribed about unit diameter n-balls (blue) for $n=[-4,6]$. They are
convergent to zero with decreasing n. However, surfaces first achieve a local maximum at $n=-3.5$.

Figure 5. Graphs of surfaces (S) of n-orthoplices (green) circumscribed about unit diameter n-balls (blue) with the reflection function (dark green) for $n=[-8$, , b]. They are divergent to
infinity with decreasing n crossing all quadrants of the complex plane but first achieve a local infinity with decreasing
minimum at $n=-3.5$.

Where previously undefined, this research reveals that volumes and surfaces can also be generated for negative dimensions.

EXPLORING

NEGATIVE dimensions

in this novel exploration of negative dimensions, Łukaszyk observes that, when compared with their counterparts in positive dimensions,
n-balls, n-simplices, and n-orthoplices
exhibit different properties. He notes that this study concurs with prior research and shows 'that our intuitive notions of a dimension as a natural number representing the number of to specify a point within Euclided
space, and lengths, surfaces, and volumes as real, positive numbers re obsolete.' For instance, it has are in keeping with experimental observations and allow for the analysis of the transport properties in porous media, including thermal conductivities and permeability, in the oil/gas/water/ rock system.

BIG BANG THEORY

ukaszyk describes how the first zero dimensional point, the primordial Big Bang singularity, emerged from a negative one-dimensional void. Space and time did not exist before this event, which generated infinitely more points that form numerous eal and imaginary dimensionalities. ological evolution has been dimensionality - the four-dimensional space-time dimension comprising three spatial dimensions together with one imaginary time dimension, mostly due to the exotic \mathbb{R}^{4} property of such configuration, which is absent in other dimensionalities.

The recurrence relations presented in this study remove the indefiniteness and singularities existing in known formulae, enabling Łukaszyk to reveal the previously unknown properties of n-balls, regular n-simplices, -orthoplices, and n-cubes in complex dimensions with potential application finguistic statistics, fog computing,

Behind the Research

Dr Szymon Łukaszyk
E: szymon@patent.pl W: www.patent.pl

Research Objectives
Drkukaszyk investigates the properties of regula convex polytopes and balls.

Detail

Bio
Born 1972. MSC in 1996 on genetic algorithms. Research on neural networks. PhD in 2004 on Łukaszyk-Karmowski metric. Since 2016 conducting own, independent research on quantum theory, hols.

Collaborators

- Mirosław Hołociński
- My wife and her mother

References

kukaszyk, S, Tomski, A, (2023) Omnidimensional convex polytopes. Symmetry, 15, 755. doi.org/10.3390/sym15030755

Łukaszyk, S, (2022) Novel recurrence relations for volumes and surfaces of n-balls, regular n-simplices, and n-orthoplices in real dimensions, Mathematics, 10(13), 2212. doi.org/10.3390/math10132212
kukaszyk, S, (2022) Black hole horizons as patternless binary messages and markers of dimensionality. [Manuscript submitted for publication].

Personal Response

What inspired you to find this novel recurrence relation?

I/ I am convinced that this little fairy...

...carrying her heart in her hands, that my wife drew in my notebook on the page where I was pondering n-balls, was my muse in May 2020. She is inscribed in a 2 -ball (disk) and her slightly separated body and angled brassards hinted to me to similarly separate the known ball volume formula

$$
V_{n}(R)_{B}=\frac{\pi^{n / 2}}{\Gamma(n / 2+1)} R^{n}
$$

into a radius factor R^{n} rational factor and π-factor, using the similarly angled - floor function $\quad\rfloor$
(in the ball volume, the power of π rises with every two dimensions), while 14 ruffles in her crown suggested using ' n ' (the 14th letter in the alphabet) in the denominator of the sequence $f_{n}=2 f_{n-2} / n$. Calculating the inverse of the gamma function of the known formula above (without the π--actor for odd n's) for a few initial dimensionswas also helphu. He breakhrough came in are zero in the negative, integer dimensions.

