High pressure talk with Professor Rhian Touyz
Professor Rhian Touyz is the Director of the Institute of Cardiovascular and Medical Sciences (ICAMS) at the University of Glasgow, the British Heart Foundation (BHF) Chair of Cardiovascular Medicine and Director of the ICAMS BHF Award of Research Excellence. She specialises in hypertension, abnormally high blood pressure which increases the risk of heart attacks, strokes, kidney failure and cognitive decline (dementia). Her mission is to help enhance human health through her research into the causes of cardiovascular disease.
Research Outreach caught up with Prof Touyz to talk about the latest ICAMS research and her role as leader in the 400-member institute. Here she discusses the development of her fascination with hypertension as one of the key causes of CVD and provides an insight into the organisation’s excellent contribution to cardiovascular research. She also discusses her earlier career and shares her hopes for the future.
Hi Rhian! Can you tell us more about the relationship between the Institute of Cardiovascular and Medical Sciences (ICAMS) and the British Heart Foundation Glasgow Cardiovascular Research Centre?
Our institute focuses on cardiovascular research, specifically cardiovascular diseases. The diseases we focus on relate to heart disease, especially heart failure and ischemic heart disease or heart attacks. We conduct research in pulmonary hypertension, hypertension or high blood pressure, along with diabetes and metabolic disease as it is implied in cardiovascular disease. In addition to this, we have a very strong programme in stroke research and kidney failure because these pathologies are also intricately linked to cardiovascular disease. Those are our main areas of research in terms of disease processes, and alongside this, we also research the basic science that feeds into the mechanisms of these diseases, such as: molecular biology, cell biology, redox biology, experimental models, physiology, genetics, proteomics, imaging, and electrophysiology. Taking our research and discoveries from the laboratory to the patients and population is a major goal, and as such, we have a very strong programme on ‘healthy lifestyle’ and cardiovascular protection, enabling us to interact very closely with doctors in the hospitals.
Could you provide us with more detail as to what hypertension is? Every time the heart beats, it contracts and then relaxes, allowing the pressure to be pushed along the vessel so that the blood vessels can drive the blood flow, supplying all the tissues and organs with nutrients, especially oxygen. If that pressure gets too high, it can cause damage to the blood vessels and organs. I always say that the best way of thinking about this is if you consider a hose pipe with a tap at the end. If you turn the tap on and the water flows through the hose pipe, then this can be viewed as a healthy working flow. But if you constrict the hose pipe, or make the lumen or inside of the hose pipe narrower, the pressure naturally must increase to allow for water to flow through, and that’s exactly what happens with hypertension. The heart is the tap in this analogy; it must pump harder to make the blood flow through the vessels when the pressure is higher, and this is what causes damage to the kidneys, heart, brain and other organs. Are there any recent breakthroughs or interesting projects that you’re particularly excited about? We have conducted a vast amount of research on statins and how they influence cardiovascular and cardiometabolic disease, especially in relation to the treatment of diabetes. These new breakthroughs will be published later this year. My personal interest, at the basic science level is to examine how small blood vessels undergo damage and inflammation, and also how that may play a role in the injuries that underlie most cardiovascular diseases. What impact has the BHF GCRC had on cardiovascular medicine since it was established? Also, the research work conducted in Glasgow has historically played a major role in the management of stroke, and in setting up a stroke unit that has effectively improved the outcomes for stroke patients. In fact, Glasgow has generally played a very important role in neurological disorders. For example, the universal Glasgow Coma Scale, devised right here by our neurologists, is the most common scoring system used to describe the level of consciousness in a person following a traumatic brain injury. Our scientists and clinical researchers have discovered a treatment called thrombolysis, otherwise known as thrombolytic therapy, which is a treatment to dissolve dangerous clots in blood vessels, improve blood flow, and prevent damage to tissues and organs. They discovered that the sooner you complete thrombolytic treatment, the greater the chance of survival for stroke patients. One of our stroke specialist doctors has also played a very important role in the establishment of a stroke unit, in terms of when the patient comes in, what should be done and how the stroke unit should be organised effectively – this makes a greater difference to the outcomes for stroke patients. I believe we’re going to see big advances in using new technologies and methods to understand the fundamental processes of cardiovascular disease As well as being the director, you are a clinician scientist carrying out research into hypertension, with an active role in patient care. How do you find the time to balance each of these positions? In terms of balancing my leadership, clinical, and research role, it all comes down to effective time management and prioritising the work that really needs to get done. These skills allow me to carry out these roles successfully. That sounds like a good recipe. What initially triggered your interest in hypertension research? I’m very interested in trying to understand what causes high blood pressure, as we already know that if you prevent hypertension or properly control blood pressure, other conditions directly linked to cardiovascular disease can be prevented. By preventing patients from getting strokes, heart failure, heart attacks, atrial fibrillation, dementia, or becoming dependent upon on dialysis, where they can’t work anymore and where they spend a lot of time in hospital, we would have a much healthier population; from a public and economic health point of view, this is much more attractive. That’s why I’m so committed to this research and study to try to prevent it or at least better manage it. So you’re now based in Scotland, but were originally from South Africa, and have worked across North America – do you find that attitudes to cardiovascular disease differ in each region? Modern medicine of the near future will focus on treatment of the specific disease characteristics of each individual patient using a personalised or precision medicine approach In terms of the attitudes of the professionals, I think today everybody appreciates that cardiovascular disease is a medical priority that needs attention. In each region I’ve worked in, I found that the focus on prevention is very important, especially in terms of lifestyle modifications. Although, in Canada, South Africa and here in Scotland, some of the treatment protocols are a little bit different. Of course, while all patients are appreciative of good medical care, there are a few notable difference in patient attitudes across the different regions. In North America for example, patients tend to assume more responsibility for their own health and medical situations. Whereas here in Scotland, patients give most of the decision-making responsibility to the doctors. Of course, this is just from my personal observations and experiences. At the end of the day, it’s really important that patients get the best medical care that is appropriate for their particular disease. How do you think cardiovascular research will develop during the next decade? I also believe that we might see the emergence of different methods in the way we treat patients. Maybe we’ll use different strategies, rather than using drugs as we know them today. We may use things like nanotechnology, enabling more sophisticated diagnostic opportunities and yielding improved treatment. Essentially, new technologies and new approaches will advance over the next few years, along with the development of a greater understanding about the very fundamentals of disease processes. Finally, we may even see more management and treatment done within the home, where patients and doctors will be ‘hooked up’ through mobile apps and other technologies.